OCR MEI C3 (Core Mathematics 3) 2010 January

Question 1
View details
1 Solve the equation \(\mathrm { e } ^ { 2 x } - 5 \mathrm { e } ^ { x } = 0\).
Question 2
View details
2 The temperature \(T\) in degrees Celsius of water in a glass \(t\) minutes after boiling is modelled by the equation \(T = 20 + b \mathrm { e } ^ { - k t }\), where \(b\) and \(k\) are constants. Initially the temperature is \(100 ^ { \circ } \mathrm { C }\), and after 5 minutes the temperature is \(60 ^ { \circ } \mathrm { C }\).
  1. Find \(b\) and \(k\).
  2. Find at what time the temperature reaches \(50 ^ { \circ } \mathrm { C }\).
Question 3
View details
3
  1. Given that \(y = \sqrt [ 3 ] { 1 + 3 x ^ { 2 } }\), use the chain rule to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\).
  2. Given that \(y ^ { 3 } = 1 + 3 x ^ { 2 }\), use implicit differentiation to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Show that this result is equivalent to the result in part (i).
Question 4
View details
4 Evaluate the following integrals, giving your answers in exact form.
  1. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x ^ { 2 } + 1 } \mathrm {~d} x\).
  2. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x + 1 } \mathrm {~d} x\).
Question 5
View details
5 The curves in parts (i) and (ii) have equations of the form \(y = a + b \sin c x\), where \(a , b\) and \(c\) are constants. For each curve, find the values of \(a , b\) and \(c\).

  1. \includegraphics[max width=\textwidth, alt={}, center]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-2_455_679_1800_365}

  2. \includegraphics[max width=\textwidth, alt={}, center]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-2_374_679_2311_365}
Question 6
View details
6 Write down the conditions for \(\mathrm { f } ( x )\) to be an odd function and for \(\mathrm { g } ( x )\) to be an even function.
Hence prove that, if \(\mathrm { f } ( x )\) is odd and \(\mathrm { g } ( x )\) is even, then the composite function \(\mathrm { gf } ( x )\) is even.
Question 7
View details
7 Given that \(\arcsin x = \arccos y\), prove that \(x ^ { 2 } + y ^ { 2 } = 1\). [Hint: let \(\arcsin x = \theta\).] Section B (36 marks)
Question 8
View details
8 Fig. 8 shows part of the curve \(y = x \cos 3 x\).
The curve crosses the \(x\)-axis at \(\mathrm { O } , \mathrm { P }\) and Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-3_551_1189_925_479} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of P and Q .
  2. Find the exact gradient of the curve at the point P . Show also that the turning points of the curve occur when \(x \tan 3 x = \frac { 1 } { 3 }\).
  3. Find the area of the region enclosed by the curve and the \(x\)-axis between O and P , giving your answer in exact form.
Question 9
View details
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 2 x ^ { 2 } - 1 } { x ^ { 2 } + 1 }\) for the domain \(0 \leqslant x \leqslant 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-4_974_1211_358_466} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 6 x } { \left( x ^ { 2 } + 1 \right) ^ { 2 } }\), and hence that \(\mathrm { f } ( x )\) is an increasing function for \(x > 0\).
  2. Find the range of \(\mathrm { f } ( x )\).
  3. Given that \(\mathrm { f } ^ { \prime \prime } ( x ) = \frac { 6 - 18 x ^ { 2 } } { \left( x ^ { 2 } + 1 \right) ^ { 3 } }\), find the maximum value of \(\mathrm { f } ^ { \prime } ( x )\). The function \(\mathrm { g } ( x )\) is the inverse function of \(\mathrm { f } ( x )\).
  4. Write down the domain and range of \(\mathrm { g } ( x )\). Add a sketch of the curve \(y = \mathrm { g } ( x )\) to a copy of Fig. 9 .
  5. Show that \(\mathrm { g } ( x ) = \sqrt { \frac { x + 1 } { 2 - x } }\).