OCR C3 2014 June — Question 6

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
Year2014
SessionJune
TopicSign Change & Interval Methods
TypeSketch Graphs and Count Roots

6
\includegraphics[max width=\textwidth, alt={}, center]{33a2b09d-0df9-48d6-9ee9-e0a1ec345f41-3_524_720_246_676} The diagram shows the curve \(y = x ^ { 4 } - 8 x\).
  1. By sketching a second curve on the copy of the diagram, show that the equation $$x ^ { 4 } + x ^ { 2 } - 8 x - 9 = 0$$ has two real roots. State the equation of the second curve.
  2. The larger root of the equation \(x ^ { 4 } + x ^ { 2 } - 8 x - 9 = 0\) is denoted by \(\alpha\).
    (a) Show by calculation that \(2.1 < \alpha < 2.2\).
    (b) Use an iterative process based on the equation $$x = \sqrt [ 4 ] { 9 + 8 x - x ^ { 2 } } ,$$ with a suitable starting value, to find \(\alpha\) correct to 3 decimal places. Give the result of each step of the iterative process.