OCR C3 2014 June — Question 9

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
Year2014
SessionJune
TopicHarmonic Form

9
  1. Express \(5 \cos \left( \theta - 60 ^ { \circ } \right) + 3 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  2. Hence
    (a) give details of the transformations needed to transform the curve \(y = 5 \cos \left( \theta - 60 ^ { \circ } \right) + 3 \cos \theta\) to the curve \(y = \sin \theta\),
    (b) find the smallest positive value of \(\beta\) satisfying the equation $$5 \cos \left( \frac { 1 } { 3 } \beta - 40 ^ { \circ } \right) + 3 \cos \left( \frac { 1 } { 3 } \beta + 20 ^ { \circ } \right) = 3 .$$ \section*{END OF QUESTION PAPER}