OCR FP3 (Further Pure Mathematics 3) 2015 June

Question 1
View details
1 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 13 y = \sin x$$
Question 2
View details
2 The elements of a group \(G\) are polynomials of the form \(a + b x + c x ^ { 2 }\), where \(a , b , c \in \{ 0,1,2,3,4 \}\). The group operation is addition, where the coefficients are added modulo 5 .
  1. State the identity element.
  2. State the inverse of \(3 + 2 x + x ^ { 2 }\).
  3. State the order of \(G\). The proper subgroup \(H\) contains \(2 + x\) and \(1 + x\).
  4. Find the order of \(H\), justifying your answer.
Question 3
View details
3 The plane \(\Pi\) passes through the points \(( 1,2,1 ) , ( 2,3,6 )\) and \(( 4 , - 1,2 )\).
  1. Find a cartesian equation of the plane \(\Pi\). The line \(l\) has equation \(\mathbf { r } = \left( \begin{array} { r } - 1
    - 2
    6 \end{array} \right) + \lambda \left( \begin{array} { r } 4
    3
    - 2 \end{array} \right)\).
  2. Find the coordinates of the point of intersection of \(\Pi\) and \(l\).
  3. Find the acute angle between \(\Pi\) and \(l\).
Question 4
View details
4 In an Argand diagram, the complex numbers \(0 , z\) and \(z \mathrm { e } ^ { \frac { 1 } { 6 } \mathrm { i } \pi }\) are represented by the points \(O , A\) and \(B\) respectively.
  1. Sketch a possible Argand diagram showing the triangle \(O A B\). Show that the triangle is isosceles and state the size of angle \(A O B\). The complex numbers \(1 + \mathrm { i }\) and \(5 + 2 \mathrm { i }\) are represented by the points \(C\) and \(D\) respectively. The complex number \(w\) is represented by the point \(E\), such that \(C D = C E\) and angle \(D C E = \frac { 1 } { 6 } \pi\).
  2. Calculate the possible values of \(w\), giving your answers exactly in the form \(a + b \mathrm { i }\).
Question 5
View details
5 Find the particular solution of the differential equation $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 3 y = x ^ { 2 } + x$$ for which \(y = 1\) when \(x = 1\), giving \(y\) in terms of \(x\).
Question 6
View details
6 Find the shortest distance between the lines with equations $$\frac { x - 1 } { 2 } = \frac { y + 2 } { 3 } = \frac { z - 5 } { - 1 } \quad \text { and } \quad \frac { x - 3 } { 4 } = \frac { y - 1 } { - 2 } = \frac { z + 1 } { 3 } .$$
Question 7
View details
7
  1. Use de Moivre's theorem to show that \(\tan 4 \theta \equiv \frac { 4 \tan \theta - 4 \tan ^ { 3 } \theta } { 1 - 6 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta }\).
  2. Hence find the exact roots of \(t ^ { 4 } + 4 \sqrt { 3 } t ^ { 3 } - 6 t ^ { 2 } - 4 \sqrt { 3 } t + 1 = 0\).
Question 8
View details
8 Let \(G\) be any multiplicative group. \(H\) is a subset of \(G\). \(H\) consists of all elements \(h\) such that \(h g = g h\) for every element \(g\) in \(G\).
  1. Prove that \(H\) is a subgroup of \(G\). Now consider the case where \(G\) is given by the following table:
    \(e\)\(p\)\(q\)\(r\)\(s\)\(t\)
    \(e\)\(e\)\(p\)\(q\)\(r\)\(s\)\(t\)
    \(p\)\(p\)\(q\)\(e\)\(s\)\(t\)\(r\)
    \(q\)\(q\)\(e\)\(p\)\(t\)\(r\)\(s\)
    \(r\)\(r\)\(t\)\(s\)\(e\)\(q\)\(p\)
    \(s\)\(s\)\(r\)\(t\)\(p\)\(e\)\(q\)
    \(t\)\(t\)\(s\)\(r\)\(q\)\(p\)\(e\)
  2. Show that \(H\) consists of just the identity element.