OCR FP3 2009 January — Question 6

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2009
SessionJanuary
TopicVectors: Lines & Planes

6
\includegraphics[max width=\textwidth, alt={}, center]{bc975428-c594-427b-a32e-268412b3cd26-3_554_825_264_660} The cuboid \(O A B C D E F G\) shown in the diagram has \(\overrightarrow { O A } = 4 \mathbf { i } , \overrightarrow { O C } = 2 \mathbf { j } , \overrightarrow { O D } = 3 \mathbf { k }\), and \(M\) is the mid-point of \(G F\).
  1. Find the equation of the plane \(A C G E\), giving your answer in the form r.n \(= p\).
  2. The plane \(O E F C\) has equation \(\mathbf { r } \cdot ( 3 \mathbf { i } - 4 \mathbf { k } ) = 0\). Find the acute angle between the planes \(O E F C\) and \(A C G E\).
  3. The line \(A M\) meets the plane \(O E F C\) at the point \(W\). Find the ratio \(A W : W M\).