OCR FP3 2009 January — Question 1

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2009
SessionJanuary
TopicGroups

1 In this question \(G\) is a group of order \(n\), where \(3 \leqslant n < 8\).
  1. In each case, write down the smallest possible value of \(n\) :
    (a) if \(G\) is cyclic,
    (b) if \(G\) has a proper subgroup of order 3,
    (c) if \(G\) has at least two elements of order 2 .
  2. Another group has the same order as \(G\), but is not isomorphic to \(G\). Write down the possible value(s) of \(n\).