CAIE P3 2011 June — Question 7

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2011
SessionJune
TopicComplex Numbers Argand & Loci

7
  1. The complex number \(u\) is defined by \(u = \frac { 5 } { a + 2 \mathrm { i } }\), where the constant \(a\) is real.
    1. Express \(u\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
    2. Find the value of \(a\) for which \(\arg \left( u ^ { * } \right) = \frac { 3 } { 4 } \pi\), where \(u ^ { * }\) denotes the complex conjugate of \(u\).
  2. On a sketch of an Argand diagram, shade the region whose points represent complex numbers \(z\) which satisfy both the inequalities \(| z | < 2\) and \(| z | < | z - 2 - 2 \mathrm { i } |\).