Edexcel C34 2016 June — Question 11

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2016
SessionJune
TopicVectors 3D & Lines

11. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$\begin{aligned} & l _ { 1 } : \mathbf { r } = \left( \begin{array} { l } 7
4
9 \end{array} \right) + \lambda \left( \begin{array} { l } 1
1
4 \end{array} \right)
& l _ { 2 } : \mathbf { r } = \left( \begin{array} { r } - 6
- 7
3 \end{array} \right) + \mu \left( \begin{array} { l } 5
4
b \end{array} \right) \end{aligned}$$ where \(\lambda\) and \(\mu\) are scalar parameters and \(b\) is a constant.
Given that \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(X\),
  1. show that \(b = - 3\) and find the coordinates of \(X\). The point \(A\) lies on \(l _ { 1 }\) and has coordinates (6, 3, 5)
    The point \(B\) lies on \(l _ { 2 }\) and has coordinates \(( 14,9 , - 9 )\)
  2. Show that angle \(A X B = \arccos \left( - \frac { 1 } { 10 } \right)\)
  3. Using the result obtained in part (b), find the exact area of triangle \(A X B\). Write your answer in the form \(p \sqrt { q }\) where \(p\) and \(q\) are integers to be determined.