10. (a) Given that \(- \frac { \pi } { 2 } < \mathrm { g } ( x ) < \frac { \pi } { 2 }\), sketch the graph of \(y = \mathrm { g } ( x )\) where
$$\mathrm { g } ( x ) = \arctan x , \quad x \in \mathbb { R }$$
(b) Find the exact value of \(x\) for which
$$3 g ( x + 1 ) - \pi = 0$$
The equation \(\arctan x - 4 + \frac { 1 } { 2 } x = 0\) has a positive root at \(x = \alpha\) radians.
(c) Show that \(5 < \alpha < 6\)
The iteration formula
$$x _ { n + 1 } = 8 - 2 \arctan x _ { n }$$
can be used to find an approximation for \(\alpha\)
(d) Taking \(x _ { 0 } = 5\), use this formula to find \(x _ { 1 }\) and \(x _ { 2 }\), giving each answer to 3 decimal places.