Edexcel AEA 2005 June — Question 4

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2005
SessionJune
TopicDifferentiation Applications
TypeOptimization with constraints

4.A rectangle \(A B C D\) is drawn so that \(A\) and \(B\) lie on the \(x\)-axis,and \(C\) and \(D\) lie on the curve with equation \(y = \cos x , - \frac { \pi } { 2 } < x < \frac { \pi } { 2 }\) .The point \(A\) has coordinates \(( p , 0 )\) ,where \(0 < p < \frac { \pi } { 2 }\) .
(a)Find an expression,in terms of \(p\) ,for the area of this rectangle. The maximum area of \(A B C D\) is \(S\) and occurs when \(p = \alpha\) .Show that
(b)\(\frac { \pi } { 4 } < \alpha < 1\) ,
(c)\(S = \frac { 2 \alpha ^ { 2 } } { \sqrt { } \left( 1 + \alpha ^ { 2 } \right) }\) ,
(d)\(\frac { \pi ^ { 2 } } { 2 \sqrt { } \left( 16 + \pi ^ { 2 } \right) } < S < \sqrt { } 2\) .