| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2003 |
| Session | June |
| Topic | Generalised Binomial Theorem and Partial Fractions |
4.
$$f ( x ) = \frac { 1 - 3 x } { \left( 1 + 3 x ^ { 2 } \right) ( 1 - x ) ^ { 2 } } , x \neq 1$$
(a)Find the constants \(A , B , C\) and \(D\) such that
$$\mathrm { f } ( x ) \equiv \frac { A x + B } { 1 + 3 x ^ { 2 } } + \frac { C } { 1 - x } + \frac { D } { ( 1 - x ) ^ { 2 } }$$
(b)Find a series expansion for \(\mathrm { f } ( x )\) in ascending powers of \(x\) ,up to and including the term in \(x ^ { 4 }\) .
(c)Find an equation of the tangent to the curve with equation \(y = \mathrm { f } ( x )\) at the point where \(x = 0\) .