1.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 1}
\includegraphics[alt={},max width=\textwidth]{25f0c7cc-0701-4836-931e-0eff5145e029-2_433_549_270_773}
\end{figure}
The point \(A\) is a distance 1 unit from the fixed origin \(O\) .Its position vector is \(\mathbf { a } = \frac { 1 } { \sqrt { 2 } } ( \mathbf { i } + \mathbf { j } )\) . The point \(B\) has position vector \(\mathbf { a } + \mathbf { j }\) ,as shown in Figure 1.
By considering \(\triangle O A B\) ,prove that \(\tan \frac { 3 \pi } { 8 } = 1 + \sqrt { } 2\) .