2.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{71cd126f-1c7d-4e37-a26d-7ff98a74fd79-04_456_508_255_781}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
Figure 1 shows a regular hexagon \(O P Q R S T\).
The vectors \(\mathbf { p }\) and \(\mathbf { q }\) are defined by \(\mathbf { p } = \overrightarrow { O P }\) and \(\mathbf { q } = \overrightarrow { O Q }\)
Forces, in Newtons, \(\mathbf { F } _ { P } = ( \overrightarrow { O P } ) , \mathbf { F } _ { Q } = 2 \times ( \overrightarrow { O Q } ) , \mathbf { F } _ { R } = 3 \times ( \overrightarrow { O R } ) , \mathbf { F } _ { S } = 4 \times ( \overrightarrow { O S } )\) and \(\mathbf { F } _ { T } = 5 \times ( \overrightarrow { O T } )\) are applied to a particle.
- Find, in terms of \(\mathbf { p }\) and \(\mathbf { q }\), the resultant force on the particle.
The magnitude of the acceleration of the particle due to these forces is \(13 \mathrm {~ms} ^ { - 2 }\)
Given that the mass of the particle is 3 kg , - find \(| \mathbf { p } |\)
\includegraphics[max width=\textwidth, alt={}, center]{71cd126f-1c7d-4e37-a26d-7ff98a74fd79-04_2255_56_310_1980}