Edexcel AEA 2019 June — Question 7

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2019
SessionJune
TopicVariable Force

7.Figure 2 shows a rectangular section of marshland,\(O A B C\) ,which is \(a\) metres long by \(b\) metres wide,where \(a > b\) . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{175528b0-6cd1-4d0d-a6b3-28ac980f74f3-22_360_847_340_609} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Edgar intends to get from \(O\) to \(B\) in the shortest possible time.In order to do this,he runs along edge \(O A\) for a distance \(x\) metres \(( 0 \leqslant x < a )\) to the point \(D\) before wading through the marsh directly from \(D\) to \(B\) . Edgar can wade through the marsh at a constant speed of \(1 \mathrm {~ms} ^ { - 1 }\) ,and he can run along the edge of the marsh at a constant speed of \(\lambda \mathrm { ms } ^ { - 1 }\) ,where \(\lambda > 1\)
(a)By finding an expression in terms of \(x\) for the time taken,\(t\) seconds,for Edgar to reach \(B\) from \(O\) ,show that $$\frac { \mathrm { d } t } { \mathrm {~d} x } = \frac { 1 } { \lambda } - \frac { a - x } { \sqrt { ( a - x ) ^ { 2 } + b ^ { 2 } } }$$ (b)(i)Find,in terms of \(a , b\) and \(\lambda\) ,the value of \(x\) for which \(\frac { \mathrm { d } t } { \mathrm {~d} x } = 0\)
(ii)Show that this value of \(x\) lies in the interval \(0 \leqslant x < a\) provided \(\lambda \geqslant \sqrt { 1 + \frac { b ^ { 2 } } { a ^ { 2 } } }\)
(iii)For \(\lambda\) in this range,show that the value of \(x\) found in(b)(i)gives a minimum value of \(t\) .
(c)Find the minimum time taken for Edgar to get from \(O\) to \(B\) if
(i)\(\lambda \geqslant \sqrt { 1 + \frac { b ^ { 2 } } { a ^ { 2 } } }\)
(ii) \(1 < \lambda < \sqrt { 1 + \frac { b ^ { 2 } } { a ^ { 2 } } }\) Edgar's friend,Frankie,also runs at a constant speed of \(\lambda \mathrm { m } \mathrm { s } ^ { - 1 }\) .Frankie runs along the edges \(O A\) and \(A B\) .Given that \(\lambda \geqslant \sqrt { 1 + \frac { b ^ { 2 } } { a ^ { 2 } } }\)
(d)find the range of values of \(\lambda\) for which Frankie gets to \(B\) from \(O\) in a shorter time than Edgar's minimum time.