Edexcel AEA 2019 June — Question 6

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2019
SessionJune
TopicIntegration by Parts

6.Figure 1 shows a sketch of part of the curve with equation \(y = x \sin ( \ln x ) , x \geqslant 1\) \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{175528b0-6cd1-4d0d-a6b3-28ac980f74f3-18_451_1170_312_450} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} For \(x > 1\) ,the curve first crosses the \(x\)-axis at the point \(A\) .
(a)Find the \(x\) coordinate of \(A\) .
(b)Differentiate \(x \sin ( \ln x )\) and \(x \cos ( \ln x )\) with respect to \(x\) and hence find $$\int \sin ( \ln x ) \mathrm { d } x \text { and } \int \cos ( \ln x ) \mathrm { d } x$$ (c)(i)Find \(\int x \sin ( \ln x ) \mathrm { d } x\) .
(ii)Hence show that the area of the shaded region \(\boldsymbol { R }\) ,bounded by the curve and the \(x\)-axis between the points \(( 1,0 )\) and \(A\) ,is $$\frac { 1 } { 5 } \left( \mathrm { e } ^ { 2 \pi } + 1 \right)$$