| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2002 |
| Session | Specimen |
| Topic | Differentiation Applications |
| Type | Prove constraint relationship |
4.A curve \(C\) has equation \(y = \mathrm { f } ( x )\) with \(\mathrm { f } ^ { \prime } ( x ) > 0\) .The \(x\)-coordinate of the point \(P\) on the curve is \(a\) .The tangent and the normal to \(C\) are drawn at \(P\) .The tangent cuts the \(x\)-axis at the point \(A\) and the normal cuts the \(x\)-axis at the point \(B\) .
(a)Show that the area of \(\triangle A P B\) is
$$\frac { 1 } { 2 } [ \mathrm { f } ( a ) ] ^ { 2 } \left( \frac { \left[ \mathrm { f } ^ { \prime } ( a ) \right] ^ { 2 } + 1 } { \mathrm { f } ^ { \prime } ( a ) } \right)$$
(b)Given that \(\mathrm { f } ( x ) = \mathrm { e } ^ { 5 x }\) and the area of \(\triangle A P B\) is \(\mathrm { e } ^ { 5 a }\) ,find and simplify the exact value of \(a\) .