OCR FP2 2008 June — Question 4

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2008
SessionJune
TopicHyperbolic functions

4
  1. Sketch, on the same diagram, the curves with equations \(y = \operatorname { sech } x\) and \(y = x ^ { 2 }\).
  2. By using the definition of \(\operatorname { sech } x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\), show that the \(x\)-coordinates of the points at which these curves meet are solutions of the equation $$x ^ { 2 } = \frac { 2 \mathrm { e } ^ { x } } { \mathrm { e } ^ { 2 x } + 1 } .$$
  3. The iteration $$x _ { n + 1 } = \sqrt { \frac { 2 \mathrm { e } ^ { x _ { n } } } { \mathrm { e } ^ { 2 x _ { n } } + 1 } }$$ can be used to find the positive root of the equation in part (ii). With initial value \(x _ { 1 } = 1\), the approximations \(x _ { 2 } = 0.8050 , x _ { 3 } = 0.8633 , x _ { 4 } = 0.8463\) and \(x _ { 5 } = 0.8513\) are obtained, correct to 4 decimal places. State with a reason whether, in this case, the iteration produces a 'staircase' or a ‘cobweb’ diagram.