OCR FP2 2006 June — Question 9

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2006
SessionJune
TopicReduction Formulae

9
  1. Given that \(y = \sinh ^ { - 1 } x\), prove that \(y = \ln \left( x + \sqrt { x ^ { 2 } + 1 } \right)\).
  2. It is given that, for non-negative integers \(n\), $$I _ { n } = \int _ { 0 } ^ { \alpha } \sinh ^ { n } \theta \mathrm {~d} \theta$$ where \(\alpha = \sinh ^ { - 1 } 1\). Show that $$n I _ { n } = \sqrt { 2 } - ( n - 1 ) I _ { n - 2 } , \quad \text { for } n \geqslant 2 .$$
  3. Evaluate \(I _ { 4 }\), giving your answer in terms of \(\sqrt { 2 }\) and logarithms.