OCR FP2 2006 June — Question 2

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2006
SessionJune
TopicIntegration using inverse trig and hyperbolic functions

2
  1. Given that \(y = \tan ^ { - 1 } x\), prove that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 1 + x ^ { 2 } }\).
  2. Verify that \(y = \tan ^ { - 1 } x\) satisfies the equation $$\left( 1 + x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 0$$