A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Integration using inverse trig and hyperbolic functions
Q2
OCR FP2 2006 June — Question 2
Exam Board
OCR
Module
FP2 (Further Pure Mathematics 2)
Year
2006
Session
June
Topic
Integration using inverse trig and hyperbolic functions
2
Given that \(y = \tan ^ { - 1 } x\), prove that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 1 + x ^ { 2 } }\).
Verify that \(y = \tan ^ { - 1 } x\) satisfies the equation $$\left( 1 + x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 0$$
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9