OCR FP2 2006 June — Question 5

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2006
SessionJune
TopicIntegration using inverse trig and hyperbolic functions

5
  1. Express \(t ^ { 2 } + t + 1\) in the form \(( t + a ) ^ { 2 } + b\).
  2. By using the substitution \(\tan \frac { 1 } { 2 } x = t\), show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { 1 } { 2 + \sin x } \mathrm {~d} x = \frac { \sqrt { 3 } } { 9 } \pi$$