A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Integration using inverse trig and hyperbolic functions
Q5
OCR FP2 2006 June — Question 5
Exam Board
OCR
Module
FP2 (Further Pure Mathematics 2)
Year
2006
Session
June
Topic
Integration using inverse trig and hyperbolic functions
5
Express \(t ^ { 2 } + t + 1\) in the form \(( t + a ) ^ { 2 } + b\).
By using the substitution \(\tan \frac { 1 } { 2 } x = t\), show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { 1 } { 2 + \sin x } \mathrm {~d} x = \frac { \sqrt { 3 } } { 9 } \pi$$
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9