OCR FP2 2008 January — Question 7

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2008
SessionJanuary
TopicReduction Formulae

7 It is given that, for integers \(n \geqslant 1\), $$I _ { n } = \int _ { 0 } ^ { 1 } \frac { 1 } { \left( 1 + x ^ { 2 } \right) ^ { n } } \mathrm {~d} x$$
  1. Use integration by parts to show that \(I _ { n } = 2 ^ { - n } + 2 n \int _ { 0 } ^ { 1 } \frac { x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) ^ { n + 1 } } \mathrm {~d} x\).
  2. Show that \(2 n I _ { n + 1 } = 2 ^ { - n } + ( 2 n - 1 ) I _ { n }\).
  3. Find \(I _ { 2 }\) in terms of \(\pi\).