OCR FP2 2008 January — Question 4

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2008
SessionJanuary
TopicPolar coordinates

4 The equation of a curve, in polar coordinates, is $$r = 1 + 2 \sec \theta , \quad \text { for } - \frac { 1 } { 2 } \pi < \theta < \frac { 1 } { 2 } \pi$$
  1. Find the exact area of the region bounded by the curve and the lines \(\theta = 0\) and \(\theta = \frac { 1 } { 6 } \pi\). [The result \(\int \sec \theta \mathrm { d } \theta = \ln | \sec \theta + \tan \theta |\) may be assumed.]
  2. Show that a cartesian equation of the curve is \(( x - 2 ) \sqrt { x ^ { 2 } + y ^ { 2 } } = x\).