OCR FP2 (Further Pure Mathematics 2) 2008 January

Question 1
View details
1 It is given that \(\mathrm { f } ( x ) = \ln ( 1 + \cos x )\).
  1. Find the exact values of \(f ( 0 ) , f ^ { \prime } ( 0 )\) and \(f ^ { \prime \prime } ( 0 )\).
  2. Hence find the first two non-zero terms of the Maclaurin series for \(\mathrm { f } ( x )\).
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{15dd10f9-73d4-4107-bb45-7866f5470572-2_577_700_577_721} The diagram shows parts of the curves with equations \(y = \cos ^ { - 1 } x\) and \(y = \frac { 1 } { 2 } \sin ^ { - 1 } x\), and their point of intersection \(P\).
  1. Verify that the coordinates of \(P\) are \(\left( \frac { 1 } { 2 } \sqrt { 3 } , \frac { 1 } { 6 } \pi \right)\).
  2. Find the gradient of each curve at \(P\).
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{15dd10f9-73d4-4107-bb45-7866f5470572-2_643_787_1621_680} The diagram shows the curve with equation \(y = \sqrt { 1 + x ^ { 3 } }\), for \(2 \leqslant x \leqslant 3\). The region under the curve between these limits has area \(A\).
  1. Explain why \(3 < A < \sqrt { 28 }\).
  2. The region is divided into 5 strips, each of width 0.2 . By using suitable rectangles, find improved lower and upper bounds between which \(A\) lies. Give your answers correct to 3 significant figures.
Question 4
View details
4 The equation of a curve, in polar coordinates, is $$r = 1 + 2 \sec \theta , \quad \text { for } - \frac { 1 } { 2 } \pi < \theta < \frac { 1 } { 2 } \pi$$
  1. Find the exact area of the region bounded by the curve and the lines \(\theta = 0\) and \(\theta = \frac { 1 } { 6 } \pi\). [The result \(\int \sec \theta \mathrm { d } \theta = \ln | \sec \theta + \tan \theta |\) may be assumed.]
  2. Show that a cartesian equation of the curve is \(( x - 2 ) \sqrt { x ^ { 2 } + y ^ { 2 } } = x\).
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{15dd10f9-73d4-4107-bb45-7866f5470572-3_606_890_815_630} The diagram shows the curve with equation \(y = x \mathrm { e } ^ { - x } + 1\). The curve crosses the \(x\)-axis at \(x = \alpha\).
  1. Use differentiation to show that the \(x\)-coordinate of the stationary point is 1 .
    \(\alpha\) is to be found using the Newton-Raphson method, with \(\mathrm { f } ( x ) = x \mathrm { e } ^ { - x } + 1\).
  2. Explain why this method will not converge to \(\alpha\) if an initial approximation \(x _ { 1 }\) is chosen such that \(x _ { 1 } > 1\).
  3. Use this method, with a first approximation \(x _ { 1 } = 0\), to find the next three approximations \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\). Find \(\alpha\), correct to 3 decimal places.
Question 6
View details
6 The equation of a curve is \(y = \frac { 2 x ^ { 2 } - 11 x - 6 } { x - 1 }\).
  1. Find the equations of the asymptotes of the curve.
  2. Show that \(y\) takes all real values.
Question 7
View details
7 It is given that, for integers \(n \geqslant 1\), $$I _ { n } = \int _ { 0 } ^ { 1 } \frac { 1 } { \left( 1 + x ^ { 2 } \right) ^ { n } } \mathrm {~d} x$$
  1. Use integration by parts to show that \(I _ { n } = 2 ^ { - n } + 2 n \int _ { 0 } ^ { 1 } \frac { x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) ^ { n + 1 } } \mathrm {~d} x\).
  2. Show that \(2 n I _ { n + 1 } = 2 ^ { - n } + ( 2 n - 1 ) I _ { n }\).
  3. Find \(I _ { 2 }\) in terms of \(\pi\).
Question 8
View details
8
  1. By using the definition of \(\sinh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\), show that $$\sinh ^ { 3 } x = \frac { 1 } { 4 } \sinh 3 x - \frac { 3 } { 4 } \sinh x$$
  2. Find the range of values of the constant \(k\) for which the equation $$\sinh 3 x = k \sinh x$$ has real solutions other than \(x = 0\).
  3. Given that \(k = 4\), solve the equation in part (ii), giving the non-zero answers in logarithmic form.
Question 9
View details
9
  1. Prove that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \cosh ^ { - 1 } x \right) = \frac { 1 } { \sqrt { x ^ { 2 } - 1 } }\).
  2. Hence, or otherwise, find \(\int \frac { 1 } { \sqrt { 4 x ^ { 2 } - 1 } } \mathrm {~d} x\).
  3. By means of a suitable substitution, find \(\int \sqrt { 4 x ^ { 2 } - 1 } \mathrm {~d} x\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }