OCR FP2 (Further Pure Mathematics 2) 2007 January

Question 1
View details
1 It is given that \(\mathrm { f } ( x ) = \ln ( 3 + x )\).
  1. Find the exact values of \(f ( 0 )\) and \(f ^ { \prime } ( 0 )\), and show that \(f ^ { \prime \prime } ( 0 ) = - \frac { 1 } { 9 }\).
  2. Hence write down the first three terms of the Maclaurin series for \(\mathrm { f } ( x )\), given that \(- 3 < x \leqslant 3\).
Question 2
View details
2 It is given that \(\mathrm { f } ( x ) = x ^ { 2 } - \tan ^ { - 1 } x\).
  1. Show by calculation that the equation \(\mathrm { f } ( x ) = 0\) has a root in the interval \(0.8 < x < 0.9\).
  2. Use the Newton-Raphson method, with a first approximation 0.8, to find the next approximation to this root. Give your answer correct to 3 decimal places.
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{268b605f-eb86-40df-946a-210da1355e83-2_686_967_998_589} The diagram shows the curve with equation \(y = \mathrm { e } ^ { x ^ { 2 } }\), for \(0 \leqslant x \leqslant 1\). The region under the curve between these limits is divided into four strips of equal width. The area of this region under the curve is \(A\).
  1. By considering the set of rectangles indicated in the diagram, show that an upper bound for \(A\) is 1.71 .
  2. By considering an appropriate set of four rectangles, find a lower bound for \(A\).
Question 4
View details
4
  1. On separate diagrams, sketch the graphs of \(y = \sinh x\) and \(y = \operatorname { cosech } x\).
  2. Show that \(\operatorname { cosech } x = \frac { 2 \mathrm { e } ^ { x } } { \mathrm { e } ^ { 2 x } - 1 }\), and hence, using the substitution \(u = \mathrm { e } ^ { x }\), find \(\int \operatorname { cosech } x \mathrm {~d} x\).
Question 5
View details
5 It is given that, for non-negative integers \(n\), $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \cos x \mathrm {~d} x$$
  1. Prove that, for \(n \geqslant 2\), $$I _ { n } = \left( \frac { 1 } { 2 } \pi \right) ^ { n } - n ( n - 1 ) I _ { n - 2 } .$$
  2. Find \(I _ { 4 }\) in terms of \(\pi\).
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{268b605f-eb86-40df-946a-210da1355e83-3_716_1431_852_356} The diagram shows the curve with equation \(y = \frac { 2 x ^ { 2 } - 3 a x } { x ^ { 2 } - a ^ { 2 } }\), where \(a\) is a positive constant.
  1. Find the equations of the asymptotes of the curve.
  2. Sketch the curve with equation $$y ^ { 2 } = \frac { 2 x ^ { 2 } - 3 a x } { x ^ { 2 } - a ^ { 2 } } .$$ State the coordinates of any points where the curve crosses the axes, and give the equations of any asymptotes.
Question 7
View details
7
  1. Express \(\frac { 1 - t ^ { 2 } } { t ^ { 2 } \left( 1 + t ^ { 2 } \right) }\) in partial fractions.
  2. Use the substitution \(t = \tan \frac { 1 } { 2 } x\) to show that $$\int _ { \frac { 1 } { 3 } \pi } ^ { \frac { 1 } { 2 } \pi } \frac { \cos x } { 1 - \cos x } \mathrm {~d} x = \sqrt { 3 } - 1 - \frac { 1 } { 6 } \pi$$
Question 8
View details
8
  1. Define tanh \(y\) in terms of \(\mathrm { e } ^ { y }\) and \(\mathrm { e } ^ { - y }\).
  2. Given that \(y = \tanh ^ { - 1 } x\), where \(- 1 < x < 1\), prove that \(y = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)\).
  3. Find the exact solution of the equation \(3 \cosh x = 4 \sinh x\), giving the answer in terms of a logarithm.
  4. Solve the equation $$\tanh ^ { - 1 } x + \ln ( 1 - x ) = \ln \left( \frac { 4 } { 5 } \right)$$
Question 9
View details
9 The equation of a curve, in polar coordinates, is $$r = \sec \theta + \tan \theta , \quad \text { for } 0 \leqslant \theta \leqslant \frac { 1 } { 3 } \pi$$
  1. Sketch the curve.
  2. Find the exact area of the region bounded by the curve and the lines \(\theta = 0\) and \(\theta = \frac { 1 } { 3 } \pi\).
  3. Find a cartesian equation of the curve. \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }