OCR FP2 2007 January — Question 5

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2007
SessionJanuary
TopicReduction Formulae

5 It is given that, for non-negative integers \(n\), $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \cos x \mathrm {~d} x$$
  1. Prove that, for \(n \geqslant 2\), $$I _ { n } = \left( \frac { 1 } { 2 } \pi \right) ^ { n } - n ( n - 1 ) I _ { n - 2 } .$$
  2. Find \(I _ { 4 }\) in terms of \(\pi\).