OCR MEI C4 — Question 5

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
TopicFirst order differential equations (integrating factor)

5 Data suggest that the number of cases of infection from a particular disease tends to oscillate between two values over a period of approximately 6 months.
  1. Suppose that the number of cases, \(P\) thousand, after time \(t\) months is modelled by the equation \(P = \frac { 2 } { 2 - \sin t }\). Thus, when \(t = 0 , P = 1\).
    1. By considering the greatest and least values of \(\sin t\), write down the greatest and least values of \(P\) predicted by this model.
    2. Verify that \(P\) satisfies the differential equation \(\frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { 1 } { 2 } P ^ { 2 } \cos t\).
  2. An alternative model is proposed, with differential equation $$\frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { 1 } { 2 } \left( 2 P ^ { 2 } - P \right) \cos t$$ As before, \(P = 1\) when \(t = 0\).
    1. Express \(\frac { 1 } { P ( 2 P - 1 ) }\) in partial fractions.
    2. Solve the differential equation (*) to show that $$\ln \left( \frac { 2 P } { P } \right) = \frac { 1 } { 2 } \sin t$$ This equation can be rearranged to give \(P = \frac { 1 } { 2 \mathrm { e } ^ { \frac { 1 } { 2 } \sin t } }\).
    3. Find the greatest and least values of \(P\) predicted by this model.