OCR MEI C4 — Question 4

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
TopicDifferential equations

4 A skydiver drops from a helicopter. Before she opens her parachute, her speed \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) after time \(t\) seconds is modelled by the differential equation $$\frac { \mathrm { d } v } { \mathrm {~d} t } = 10 \mathrm { e } ^ { - \frac { 1 } { 2 } t }$$ When \(t = 0 , v = 0\).
  1. Find \(v\) in terms of \(t\).
  2. According to this model, what is the speed of the skydiver in the long term? She opens her parachute when her speed is \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Her speed \(t\) seconds after this is \(w \mathrm {~m} \mathrm {~s} ^ { - 1 }\), and is modelled by the differential equation $$\frac { \mathrm { d } w } { \mathrm {~d} t } = - \frac { 1 } { 2 } ( w - 4 ) ( w + 5 )$$
  3. Express \(\frac { 1 } { ( w - 4 ) ( w + 5 ) }\) in partial fractions.
  4. Using this result, show that \(\frac { w - 4 } { w + 5 } = 0.4 \mathrm { e } ^ { - 4.5 t }\).
  5. According to this model, what is the speed of the skydiver in the long term?