A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q10
CAIE P3 2003 June — Question 10
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2003
Session
June
Topic
Reciprocal Trig & Identities
10
Prove the identity $$\cot x - \cot 2 x \equiv \operatorname { cosec } 2 x$$
Show that \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 4 } \pi } \cot x \mathrm {~d} x = \frac { 1 } { 2 } \ln 2\).
Find the exact value of \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 4 } \pi } \operatorname { cosec } 2 x \mathrm {~d} x\), giving your answer in the form \(a \ln b\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10