CAIE P3 2003 June — Question 10

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2003
SessionJune
TopicReciprocal Trig & Identities

10
  1. Prove the identity $$\cot x - \cot 2 x \equiv \operatorname { cosec } 2 x$$
  2. Show that \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 4 } \pi } \cot x \mathrm {~d} x = \frac { 1 } { 2 } \ln 2\).
  3. Find the exact value of \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 4 } \pi } \operatorname { cosec } 2 x \mathrm {~d} x\), giving your answer in the form \(a \ln b\).