OCR MEI C4 2007 January — Question 4

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
Year2007
SessionJanuary
TopicReciprocal Trig & Identities

4 Show that \(\frac { 1 + \tan ^ { 2 } \theta } { 1 - \tan ^ { 2 } \theta } = \sec 2 \theta\).
Hence, or otherwise, solve the equation \(\frac { 1 + \tan ^ { 2 } \theta } { 1 - \tan ^ { 2 } \theta } = 2\), for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).