| Exam Board | OCR MEI |
| Module | C4 (Core Mathematics 4) |
| Year | 2007 |
| Session | January |
| Topic | Reciprocal Trig & Identities |
4 Show that \(\frac { 1 + \tan ^ { 2 } \theta } { 1 - \tan ^ { 2 } \theta } = \sec 2 \theta\).
Hence, or otherwise, solve the equation \(\frac { 1 + \tan ^ { 2 } \theta } { 1 - \tan ^ { 2 } \theta } = 2\), for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).