OCR MEI C4 (Core Mathematics 4) 2007 January

Question 1
View details
1 Solve the equation \(\frac { 1 } { x } + \frac { x } { x + 2 } = 1\).
Question 2 2 marks
View details
2 Fig. 2 shows part of the curve \(y = \sqrt { 1 + x ^ { 3 } }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5dcd4f44-4c61-4384-be1b-a8d63cb6b5aa-2_540_648_662_712} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure}
  1. Use the trapezium rule with 4 strips to estimate \(\int _ { 0 } ^ { 2 } \sqrt { 1 + x ^ { 3 } } \mathrm {~d} x\), giving your answer correct to 3 significant figures.
  2. Chris and Dave each estimate the value of this integral using the trapezium rule with 8 strips. Chris gets a result of 3.25, and Dave gets 3.30. One of these results is correct. Without performing the calculation, state with a reason which is correct.
    [0pt] [2]
Question 3
View details
3
  1. Use the formula for \(\sin ( \theta + \phi )\), with \(\theta = 45 ^ { \circ }\) and \(\phi = 60 ^ { \circ }\), to show that \(\sin 105 ^ { \circ } = \frac { \sqrt { 3 } + 1 } { 2 \sqrt { 2 } }\).
  2. In triangle ABC , angle \(\mathrm { BAC } = 45 ^ { \circ }\), angle \(\mathrm { ACB } = 30 ^ { \circ }\) and \(\mathrm { AB } = 1\) unit (see Fig. 3). Fig. 3 Using the sine rule, together with the result in part (i), show that \(\mathrm { AC } = \frac { \sqrt { 3 } + 1 } { \sqrt { 2 } }\).
Question 4
View details
4 Show that \(\frac { 1 + \tan ^ { 2 } \theta } { 1 - \tan ^ { 2 } \theta } = \sec 2 \theta\).
Hence, or otherwise, solve the equation \(\frac { 1 + \tan ^ { 2 } \theta } { 1 - \tan ^ { 2 } \theta } = 2\), for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
Question 5
View details
5 Find the first four terms in the binomial expansion of \(( 1 + 3 x ) ^ { \frac { 1 } { 3 } }\).
State the range of values of \(x\) for which the expansion is valid.
Question 6
View details
6
  1. Express \(\frac { 1 } { ( 2 x + 1 ) ( x + 1 ) }\) in partial fractions.
  2. A curve passes through the point \(( 0,2 )\) and satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y } { ( 2 x + 1 ) ( x + 1 ) }$$ Show by integration that \(y = \frac { 4 x + 2 } { x + 1 }\). Section B (36 marks)
Question 7
View details
7 Fig. 7 shows the curve with parametric equations $$x = \cos \theta , y = \sin \theta - \frac { 1 } { 8 } \sin 2 \theta , 0 \leqslant \theta < 2 \pi$$ The curve crosses the \(x\)-axis at points \(\mathrm { A } ( 1,0 )\) and \(\mathrm { B } ( - 1,0 )\), and the positive \(y\)-axis at C . D is the maximum point of the curve, and E is the minimum point. The solid of revolution formed when this curve is rotated through \(360 ^ { \circ }\) about the \(x\)-axis is used to model the shape of an egg. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5dcd4f44-4c61-4384-be1b-a8d63cb6b5aa-4_744_1207_776_431} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Show that, at the point \(\mathrm { A } , \theta = 0\). Write down the value of \(\theta\) at the point B , and find the coordinates of C .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Hence show that, at the point D, $$2 \cos ^ { 2 } \theta - 4 \cos \theta - 1 = 0 .$$
  3. Solve this equation, and hence find the \(y\)-coordinate of D , giving your answer correct to 2 decimal places. The cartesian equation of the curve (for \(0 \leqslant \theta \leqslant \pi\) ) is $$y = \frac { 1 } { 4 } ( 4 - x ) \sqrt { 1 - x ^ { 2 } } .$$
  4. Show that the volume of the solid of revolution of this curve about the \(x\)-axis is given by $$\frac { 1 } { 16 } \pi \int _ { - 1 } ^ { 1 } \left( 16 - 8 x - 15 x ^ { 2 } + 8 x ^ { 3 } - x ^ { 4 } \right) \mathrm { d } x .$$ Evaluate this integral.
Question 8
View details
8 A pipeline is to be drilled under a river (see Fig. 8). With respect to axes Oxyz, with the \(x\)-axis pointing East, the \(y\)-axis North and the \(z\)-axis vertical, the pipeline is to consist of a straight section AB from the point \(\mathrm { A } ( 0 , - 40,0 )\) to the point \(\mathrm { B } ( 40,0 , - 20 )\) directly under the river, and another straight section BC . All lengths are in metres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5dcd4f44-4c61-4384-be1b-a8d63cb6b5aa-5_744_1068_495_500} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Calculate the distance AB . The section BC is to be drilled in the direction of the vector \(3 \mathbf { i } + 4 \mathbf { j } + \mathbf { k }\).
  2. Find the angle ABC between the sections AB and BC . The section BC reaches ground level at the point \(\mathrm { C } ( a , b , 0 )\).
  3. Write down a vector equation of the line BC . Hence find \(a\) and \(b\).
  4. Show that the vector \(6 \mathbf { i } - 5 \mathbf { j } + 2 \mathbf { k }\) is perpendicular to the plane ABC . Hence find the cartesian equation of this plane.