OCR MEI C3 (Core Mathematics 3) 2010 June

Question 1
View details
1 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \cos 3 x \mathrm {~d} x\).
Question 2
View details
2 Given that \(\mathrm { f } ( x ) = | x |\) and \(\mathrm { g } ( x ) = x + 1\), sketch the graphs of the composite functions \(y = \mathrm { fg } ( x )\) and \(y = \operatorname { gf } ( x )\), indicating clearly which is which.
Question 3
View details
3
  1. Differentiate \(\sqrt { 1 + 3 x ^ { 2 } }\).
  2. Hence show that the derivative of \(x \sqrt { 1 + 3 x ^ { 2 } }\) is \(\frac { 1 + 6 x ^ { 2 } } { \sqrt { 1 + 3 x ^ { 2 } } }\).
Question 4
View details
4 A piston can slide inside a tube which is closed at one end and encloses a quantity of gas (see Fig. 4). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{30d0d728-d6d6-4a54-baf9-a6df8646bf64-2_154_1003_1080_571} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} The pressure of the gas in atmospheric units is given by \(p = \frac { 100 } { x }\), where \(x \mathrm {~cm}\) is the distance of the piston from the closed end. At a certain moment, \(x = 50\), and the piston is being pulled away from the closed end at 10 cm per minute. At what rate is the pressure changing at that time?
Question 5
View details
5 Given that \(y ^ { 3 } = x y - x ^ { 2 }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y - 2 x } { 3 y ^ { 2 } - x }\).
Hence show that the curve \(y ^ { 3 } = x y - x ^ { 2 }\) has a stationary point when \(x = \frac { 1 } { 8 }\).
Question 6
View details
6 The function \(\mathrm { f } ( x )\) is defined by $$f ( x ) = 1 + 2 \sin 3 x , \quad - \frac { \pi } { 6 } \leqslant x \leqslant \frac { \pi } { 6 }$$ You are given that this function has an inverse, \(\mathrm { f } ^ { - 1 } ( x )\).
Find \(\mathrm { f } ^ { - 1 } ( x )\) and its domain.
Question 7
View details
7 State whether the following statements are true or false; if false, provide a counter-example.
  1. If \(a\) is rational and \(b\) is rational, then \(a + b\) is rational.
  2. If \(a\) is rational and \(b\) is irrational, then \(a + b\) is irrational.
  3. If \(a\) is irrational and \(b\) is irrational, then \(a + b\) is irrational.
Question 8
View details
8 Fig. 8 shows the curve \(y = 3 \ln x + x - x ^ { 2 }\).
The curve crosses the \(x\)-axis at P and Q , and has a turning point at R . The \(x\)-coordinate of Q is approximately 2.05 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{30d0d728-d6d6-4a54-baf9-a6df8646bf64-3_730_841_561_651} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Verify that the coordinates of P are \(( 1,0 )\).
  2. Find the coordinates of R , giving the \(y\)-coordinate correct to 3 significant figures. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), and use this to verify that R is a maximum point.
  3. Find \(\int \ln x \mathrm {~d} x\). Hence calculate the area of the region enclosed by the curve and the \(x\)-axis between P and Q , giving your answer to 2 significant figures.
Question 9
View details
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { 2 x } } { 1 + \mathrm { e } ^ { 2 x } }\). The curve crosses the \(y\)-axis at P. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{30d0d728-d6d6-4a54-baf9-a6df8646bf64-4_604_1233_358_456} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the coordinates of P .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), simplifying your answer. Hence calculate the gradient of the curve at P .
  3. Show that the area of the region enclosed by \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\) is
    \(\frac { 1 } { 2 } \ln \left( \frac { 1 + \mathrm { e } ^ { 2 } } { 2 } \right)\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { 2 } \left( \frac { \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } } { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } } \right)\).
  4. Prove algebraically that \(\mathrm { g } ( x )\) is an odd function. Interpret this result graphically.
  5. (A) Show that \(\mathrm { g } ( x ) + \frac { 1 } { 2 } = \mathrm { f } ( x )\).
    (B) Describe the transformation which maps the curve \(y = \mathrm { g } ( x )\) onto the curve \(y = \mathrm { f } ( x )\).
    (C) What can you conclude about the symmetry of the curve \(y = \mathrm { f } ( x )\) ?