Edexcel M3 2022 June — Question 7

Exam BoardEdexcel
ModuleM3 (Mechanics 3)
Year2022
SessionJune
TopicSimple Harmonic Motion

7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2e837bb9-4ada-4f0f-8b21-2730611335f2-24_165_1392_258_338} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows two fixed points, \(A\) and \(B\), which are 5 m apart on a smooth horizontal floor. A particle \(P\) of mass 1.25 kg is attached to one end of a light elastic string, of natural length 2 m and modulus of elasticity 20 N . The other end of the string is attached to \(A\) A second light elastic string, of natural length 1.2 m and modulus of elasticity \(\lambda\) newtons, has one end attached to \(P\) and the other end attached to \(B\) Initially \(P\) rests in equilibrium at the point \(O\), where \(A O = 3 \mathrm {~m}\)
  1. Show that \(\lambda = 15\) The particle is now projected along the floor towards \(B\)
    At time \(t\) seconds, \(P\) is a displacement \(x\) metres from \(O\) in the direction \(O B\)
  2. Show that, while both strings are taut, \(P\) moves with simple harmonic motion where \(\ddot { x } = - 18 x\) The initial speed of \(P\) is \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
  3. Find the speed of \(P\) at the instant when the string \(P B\) becomes slack. Both strings are taut for \(T\) seconds during one complete oscillation.
  4. Find the value of \(T\)