Edexcel M3 (Mechanics 3) 2022 June

Question 1
View details
  1. A particle \(P\) moves in a straight line with simple harmonic motion between two fixed points \(A\) and \(B\). The particle performs 2 complete oscillations per second. The midpoint of \(A B\) is \(O\) and the midpoint of \(O A\) is \(C\)
The length of \(A B\) is 0.6 m .
  1. Find the maximum speed of \(P\)
  2. Find the time taken by \(P\) to move directly from \(O\) to \(C\)
Question 2
View details
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2e837bb9-4ada-4f0f-8b21-2730611335f2-04_390_515_246_772} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A hemispherical bowl of internal radius \(6 r\) is fixed with its circular rim horizontal. The centre of the circular rim is \(O\) and the point \(A\) on the surface of the bowl is vertically below \(O\). A particle \(P\) moves in a horizontal circle, with centre \(C\), on the smooth inner surface of the bowl. The particle moves with constant angular speed \(\sqrt { \frac { g } { 4 r } }\). The point \(C\) lies on \(O A\), as shown in Figure 1. Find, in terms of \(r\), the distance \(O C\)
Question 3
View details
  1. In this question you must show all stages of your working.
\section*{Solutions relying entirely on calculator technology are not acceptable.} A particle \(P\) is moving along a straight line. At time \(t\) seconds, \(P\) is a distance \(x\) metres from a fixed point \(O\) on the line and is moving away from \(O\) with speed \(\frac { 50 } { 2 x + 3 } \mathrm {~ms} ^ { - 1 }\)
  1. Find the deceleration of \(P\) when \(x = 12\) Given that \(x = 4\) when \(t = 1\)
  2. find the value of \(t\) when \(x = 12\)
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2e837bb9-4ada-4f0f-8b21-2730611335f2-12_357_737_260_664} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} One end of a light elastic string, of natural length \(l\) and modulus of elasticity \(\lambda\), is fixed to a point \(A\) on a smooth plane. The plane is inclined at \(30 ^ { \circ }\) to the horizontal. A small ball \(B\) of mass \(m\) is attached to the other end of the elastic string. Initially, \(B\) is held at rest at the point \(C\) on the plane with the elastic string lying along a line of greatest slope of the plane. The point \(C\) is below \(A\) and \(A C = l\), as shown in Figure 2 . The ball is released and comes to instantaneous rest at a point \(D\) on the plane.
The points \(A , C\) and \(D\) all lie along a line of greatest slope of the plane and \(A D = \frac { 5 l } { 4 }\)
The ball is modelled as a particle and air resistance is modelled as being negligible.
Using the model,
  1. show that \(\lambda = 4 \mathrm { mg }\)
  2. find, in terms of \(g\) and \(l\), the greatest speed of \(B\) as it moves from \(C\) to \(D\)
Question 5
View details
  1. (a) Use algebraic integration to show that the centre of mass of a uniform solid hemisphere of radius \(r\) is at a distance \(\frac { 3 } { 8 } r\) from the centre of its plane face.
    [0pt] [You may assume that the volume of a sphere of radius \(r\) is \(\frac { 4 } { 3 } \pi r ^ { 3 }\) ]
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2e837bb9-4ada-4f0f-8b21-2730611335f2-16_355_574_571_749} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} A uniform solid hemisphere of radius \(r\) is joined to a uniform solid right circular cone made of the same material to form a toy. The cone has base radius \(r\) and height \(k r\). The centre of the base of the cone is \(O\). The plane face of the cone coincides with the plane face of the hemisphere, as shown in Figure 3. The toy can rest in equilibrium on a horizontal plane with any point of the curved surface of the hemisphere in contact with the plane.
(b) Find the exact value of \(k\)
Question 6
View details
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2e837bb9-4ada-4f0f-8b21-2730611335f2-20_499_748_244_653} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} A particle \(P\) of mass \(m\) is attached to one end of a light inextensible string of length \(a\). The other end of the string is attached to a fixed point \(O\). The particle is held at the point \(A\), where \(O A = a\) and \(O A\) is horizontal, as shown in Figure 4. The particle is projected vertically downwards with speed \(\sqrt { \frac { 9 a g } { 5 } }\)
When the string makes an angle \(\theta\) with the downward vertical through \(O\) and the string is still taut, the tension in the string is \(S\).
  1. Show that \(S = \frac { 3 } { 5 } m g ( 5 \cos \theta + 3 )\) At the instant when the string becomes slack, the speed of \(P\) is \(v\)
  2. Show that \(v = \sqrt { \frac { 3 a g } { 5 } }\)
  3. Find the maximum height of \(P\) above the horizontal level of \(O\)
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2e837bb9-4ada-4f0f-8b21-2730611335f2-24_165_1392_258_338} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows two fixed points, \(A\) and \(B\), which are 5 m apart on a smooth horizontal floor. A particle \(P\) of mass 1.25 kg is attached to one end of a light elastic string, of natural length 2 m and modulus of elasticity 20 N . The other end of the string is attached to \(A\) A second light elastic string, of natural length 1.2 m and modulus of elasticity \(\lambda\) newtons, has one end attached to \(P\) and the other end attached to \(B\) Initially \(P\) rests in equilibrium at the point \(O\), where \(A O = 3 \mathrm {~m}\)
  1. Show that \(\lambda = 15\) The particle is now projected along the floor towards \(B\)
    At time \(t\) seconds, \(P\) is a displacement \(x\) metres from \(O\) in the direction \(O B\)
  2. Show that, while both strings are taut, \(P\) moves with simple harmonic motion where \(\ddot { x } = - 18 x\) The initial speed of \(P\) is \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
  3. Find the speed of \(P\) at the instant when the string \(P B\) becomes slack. Both strings are taut for \(T\) seconds during one complete oscillation.
  4. Find the value of \(T\)