OCR MEI C3 (Core Mathematics 3) 2006 January

Question 1
View details
1 Given that \(y = ( 1 + 6 x ) ^ { \frac { 1 } { 3 } }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { y ^ { 2 } }\).
Question 2
View details
2 A population is \(P\) million at time \(t\) years. \(P\) is modelled by the equation $$P = 5 + a \mathrm { e } ^ { - b t }$$ where \(a\) and \(b\) are constants.
The population is initially 8 million, and declines to 6 million after 1 year.
  1. Use this information to calculate the values of \(a\) and \(b\), giving \(b\) correct to 3 significant figures.
  2. What is the long-term population predicted by the model?
Question 3
View details
3
  1. Express \(2 \ln x + \ln 3\) as a single logarithm.
  2. Hence, given that \(x\) satisfies the equation $$2 \ln x + \ln 3 = \ln ( 5 x + 2 )$$ show that \(x\) is a root of the quadratic equation \(3 x ^ { 2 } - 5 x - 2 = 0\).
  3. Solve this quadratic equation, explaining why only one root is a valid solution of $$2 \ln x + \ln 3 = \ln ( 5 x + 2 ) .$$
Question 4
View details
4 Fig. 4 shows a cone. The angle between the axis and the slant edge is \(30 ^ { \circ }\). Water is poured into the cone at a constant rate of \(2 \mathrm {~cm} ^ { 3 }\) per second. At time \(t\) seconds, the radius of the water surface is \(r \mathrm {~cm}\) and the volume of water in the cone is \(V \mathrm {~cm} ^ { 3 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6a4c3f3b-a298-4b13-b97e-b52f8d9d527b-3_369_401_431_831} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Write down the value of \(\frac { \mathrm { d } V } { \mathrm {~d} t }\).
  2. Show that \(V = \frac { \sqrt { 3 } } { 3 } \pi r ^ { 3 }\), and find \(\frac { \mathrm { d } V } { \mathrm {~d} r }\).
    [0pt] [You may assume that the volume of a cone of height \(h\) and radius \(r\) is \(\frac { 1 } { 3 } \pi r ^ { 2 } h\).]
  3. Use the results of parts (i) and (ii) to find the value of \(\frac { \mathrm { d } r } { \mathrm {~d} t }\) when \(r = 2\).
Question 5
View details
5 A curve is defined implicitly by the equation $$y ^ { 3 } = 2 x y + x ^ { 2 }$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 ( x + y ) } { 3 y ^ { 2 } - 2 x }\).
  2. Hence write down \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) in terms of \(x\) and \(y\).
Question 6
View details
6 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 1 + 2 \sin x\) for \(- \frac { 1 } { 2 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  1. Show that \(\mathrm { f } ^ { - 1 } ( x ) = \arcsin \left( \frac { x - 1 } { 2 } \right)\) and state the domain of this function. Fig. 6 shows a sketch of the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{6a4c3f3b-a298-4b13-b97e-b52f8d9d527b-4_506_561_705_751} \captionsetup{labelformat=empty} \caption{Fig. 6}
    \end{figure}
  2. Write down the coordinates of the points \(\mathrm { A } , \mathrm { B }\) and C .
Question 7
View details
7 Fig. 7 shows the curve $$y = 2 x - x \ln x , \text { where } x > 0 .$$ The curve crosses the \(x\)-axis at A , and has a turning point at B . The point C on the curve has \(x\)-coordinate 1 . Lines CD and BE are drawn parallel to the \(y\)-axis. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6a4c3f3b-a298-4b13-b97e-b52f8d9d527b-5_531_1262_671_536} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the \(x\)-coordinate of A , giving your answer in terms of e .
  2. Find the exact coordinates of B .
  3. Show that the tangents at A and C are perpendicular to each other.
  4. Using integration by parts, show that $$\int x \ln x \mathrm {~d} x = \frac { 1 } { 2 } x ^ { 2 } \ln x - \frac { 1 } { 4 } x ^ { 2 } + c$$ Hence find the exact area of the region enclosed by the curve, the \(x\)-axis and the lines CD and BE . \section*{[Question 8 is printed overleaf.]}