8 The expression \(\mathrm { T } ( \theta )\) is defined for \(\theta\) in degrees by
$$\mathrm { T } ( \theta ) = 3 \cos \left( \theta - 60 ^ { \circ } \right) + 2 \cos \left( \theta + 60 ^ { \circ } \right) .$$
- Express \(\mathrm { T } ( \theta )\) in the form \(A \sin \theta + B \cos \theta\), giving the exact values of the constants \(A\) and \(B\). [3]
- Hence express \(\mathrm { T } ( \theta )\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
- Find the smallest positive value of \(\theta\) such that \(\mathrm { T } ( \theta ) + 1 = 0\).