OCR C3 2008 June — Question 5

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
Year2008
SessionJune
TopicReciprocal Trig & Identities

5
  1. Express \(\tan 2 \alpha\) in terms of \(\tan \alpha\) and hence solve, for \(0 ^ { \circ } < \alpha < 180 ^ { \circ }\), the equation $$\tan 2 \alpha \tan \alpha = 8 .$$
  2. Given that \(\beta\) is the acute angle such that \(\sin \beta = \frac { 6 } { 7 }\), find the exact value of
    1. \(\operatorname { cosec } \beta\),
    2. \(\cot ^ { 2 } \beta\).