A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q7
OCR C3 2005 June — Question 7
Exam Board
OCR
Module
C3 (Core Mathematics 3)
Year
2005
Session
June
Topic
Reciprocal Trig & Identities
7
Write down the formula for \(\cos 2 x\) in terms of \(\cos x\).
Prove the identity \(\frac { 4 \cos 2 x } { 1 + \cos 2 x } \equiv 4 - 2 \sec ^ { 2 } x\).
Solve, for \(0 < x < 2 \pi\), the equation \(\frac { 4 \cos 2 x } { 1 + \cos 2 x } = 3 \tan x - 7\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
5