OCR C3 (Core Mathematics 3) 2005 June

Question 1
View details
1 The function f is defined for all real values of \(x\) by $$f ( x ) = 10 - ( x + 3 ) ^ { 2 } .$$
  1. State the range of f .
  2. Find the value of \(\mathrm { ff } ( - 1 )\).
Question 2
View details
2 Find the exact solutions of the equation \(| 6 x - 1 | = | x - 1 |\).
Question 3
View details
3 The mass, \(m\) grams, of a substance at time \(t\) years is given by the formula $$m = 180 \mathrm { e } ^ { - 0.017 t } .$$
  1. Find the value of \(t\) for which the mass is 25 grams.
  2. Find the rate at which the mass is decreasing when \(t = 55\).
Question 4
View details
4

  1. \includegraphics[max width=\textwidth, alt={}, center]{e0e2a26b-d4d6-46ea-ac12-a882f3465e5e-2_579_785_1279_721} The diagram shows the curve \(y = \frac { 2 } { \sqrt { } x }\). The region \(R\), shaded in the diagram, is bounded by the curve and by the lines \(x = 1 , x = 5\) and \(y = 0\). The region \(R\) is rotated completely about the \(x\)-axis. Find the exact volume of the solid formed.
  2. Use Simpson's rule, with 4 strips, to find an approximate value for $$\int _ { 1 } ^ { 5 } \sqrt { } \left( x ^ { 2 } + 1 \right) \mathrm { d } x ,$$ giving your answer correct to 3 decimal places.
Question 5
View details
5
  1. Express \(3 \sin \theta + 2 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  2. Hence solve the equation \(3 \sin \theta + 2 \cos \theta = \frac { 7 } { 2 }\), giving all solutions for which \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
Question 6
View details
6
  1. Find the exact value of the \(x\)-coordinate of the stationary point of the curve \(y = x \ln x\).
  2. The equation of a curve is \(y = \frac { 4 x + c } { 4 x - c }\), where \(c\) is a non-zero constant. Show by differentiation that this curve has no stationary points.
Question 7
View details
7
  1. Write down the formula for \(\cos 2 x\) in terms of \(\cos x\).
  2. Prove the identity \(\frac { 4 \cos 2 x } { 1 + \cos 2 x } \equiv 4 - 2 \sec ^ { 2 } x\).
  3. Solve, for \(0 < x < 2 \pi\), the equation \(\frac { 4 \cos 2 x } { 1 + \cos 2 x } = 3 \tan x - 7\).
Question 8 5 marks
View details
8
\includegraphics[max width=\textwidth, alt={}, center]{e0e2a26b-d4d6-46ea-ac12-a882f3465e5e-3_588_915_954_614} The diagram shows part of each of the curves \(y = e ^ { \frac { 1 } { 5 } x }\) and \(y = \sqrt [ 3 ] { } ( 3 x + 8 )\). The curves meet, as shown in the diagram, at the point \(P\). The region \(R\), shaded in the diagram, is bounded by the two curves and by the \(y\)-axis.
  1. Show by calculation that the \(x\)-coordinate of \(P\) lies between 5.2 and 5.3.
  2. Show that the \(x\)-coordinate of \(P\) satisfies the equation \(x = \frac { 5 } { 3 } \ln ( 3 x + 8 )\).
  3. Use an iterative formula, based on the equation in part (ii), to find the \(x\)-coordinate of \(P\) correct to 2 decimal places.
  4. Use integration, and your answer to part (iii), to find an approximate value of the area of the region \(R\).
    \includegraphics[max width=\textwidth, alt={}, center]{e0e2a26b-d4d6-46ea-ac12-a882f3465e5e-4_625_647_264_749} The function f is defined by \(\mathrm { f } ( x ) = \sqrt { } ( m x + 7 ) - 4\), where \(x \geqslant - \frac { 7 } { m }\) and \(m\) is a positive constant. The diagram shows the curve \(y = \mathrm { f } ( x )\).
  5. A sequence of transformations maps the curve \(y = \sqrt { } x\) to the curve \(y = \mathrm { f } ( x )\). Give details of these transformations.
  6. Explain how you can tell that f is a one-one function and find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
  7. It is given that the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\) do not meet. Explain how it can be deduced that neither curve meets the line \(y = x\), and hence determine the set of possible values of \(m\). [5]