CAIE P2 2012 June — Question 6

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2012
SessionJune
TopicFixed Point Iteration

6
\includegraphics[max width=\textwidth, alt={}, center]{48ab71ff-c37b-4e0b-b031-d99b0cf517a8-3_421_976_251_580} The diagram shows the curve \(y = \frac { \sin 2 x } { x + 2 }\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\). The \(x\)-coordinate of the maximum point \(M\) is denoted by \(\alpha\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that \(\alpha\) satisfies the equation \(\tan 2 x = 2 x + 4\).
  2. Show by calculation that \(\alpha\) lies between 0.6 and 0.7 .
  3. Use the iterative formula \(x _ { n + 1 } = \frac { 1 } { 2 } \tan ^ { - 1 } \left( 2 x _ { n } + 4 \right)\) to find the value of \(\alpha\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.