CAIE P2 (Pure Mathematics 2) 2012 June

Question 1
View details
1 Solve the inequality \(| x + 3 | < | 2 x + 1 |\).
Question 2
View details
2
  1. Given that \(5 ^ { 2 x } + 5 ^ { x } = 12\), find the value of \(5 ^ { x }\).
  2. Hence, using logarithms, solve the equation \(5 ^ { 2 x } + 5 ^ { x } = 12\), giving the value of \(x\) correct to 3 significant figures.
Question 3
View details
3
  1. Find the quotient when the polynomial $$8 x ^ { 3 } - 4 x ^ { 2 } - 18 x + 13$$ is divided by \(4 x ^ { 2 } + 4 x - 3\), and show that the remainder is 4 .
  2. Hence, or otherwise, factorise the polynomial $$8 x ^ { 3 } - 4 x ^ { 2 } - 18 x + 9$$
Question 4
View details
4
  1. Express \(9 \sin \theta - 12 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Give the value of \(\alpha\) correct to 2 decimal places. Hence
  2. solve the equation \(9 \sin \theta - 12 \cos \theta = 4\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\),
  3. state the largest value of \(k\) for which the equation \(9 \sin \theta - 12 \cos \theta = k\) has any solutions.
Question 5
View details
5 The parametric equations of a curve are $$x = \ln ( t + 1 ) , \quad y = \mathrm { e } ^ { 2 t } + 2 t$$
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find the equation of the normal to the curve at the point for which \(t = 0\). Give your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{48ab71ff-c37b-4e0b-b031-d99b0cf517a8-3_421_976_251_580} The diagram shows the curve \(y = \frac { \sin 2 x } { x + 2 }\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\). The \(x\)-coordinate of the maximum point \(M\) is denoted by \(\alpha\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that \(\alpha\) satisfies the equation \(\tan 2 x = 2 x + 4\).
  2. Show by calculation that \(\alpha\) lies between 0.6 and 0.7 .
  3. Use the iterative formula \(x _ { n + 1 } = \frac { 1 } { 2 } \tan ^ { - 1 } \left( 2 x _ { n } + 4 \right)\) to find the value of \(\alpha\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
Question 7
View details
7
  1. Show that \(\tan ^ { 2 } x + \cos ^ { 2 } x \equiv \sec ^ { 2 } x + \frac { 1 } { 2 } \cos 2 x - \frac { 1 } { 2 }\) and hence find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( \tan ^ { 2 } x + \cos ^ { 2 } x \right) d x$$

  2. \includegraphics[max width=\textwidth, alt={}, center]{48ab71ff-c37b-4e0b-b031-d99b0cf517a8-3_550_785_1573_721} The region enclosed by the curve \(y = \tan x + \cos x\) and the lines \(x = 0 , x = \frac { 1 } { 4 } \pi\) and \(y = 0\) is shown in the diagram. Find the exact volume of the solid produced when this region is rotated completely about the \(x\)-axis.