- A particle \(P\) of mass 0.5 kg is moving under the action of a single force \(\mathbf { F }\) newtons. At time \(t\) seconds,
$$\mathbf { F } = ( 6 t - 5 ) \mathbf { i } + \left( t ^ { 2 } - 2 t \right) \mathbf { j }$$
The velocity of \(P\) at time \(t\) seconds is \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\). When \(t = 0 , \mathbf { v } = \mathbf { i } - 4 \mathbf { j }\).
- Find \(\mathbf { v }\) at time \(t\) seconds.
When \(t = 3\), the particle \(P\) receives an impulse ( \(- 5 \mathbf { i } + 12 \mathbf { j }\) ) N s.
- Find the speed of \(P\) immediately after it receives the impulse.