3.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a2738ce4-4dc5-4cd1-ac3d-0c3fcf21ea71-04_511_922_260_511}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
A package of mass 3.5 kg is sliding down a ramp. The package is modelled as a particle and the ramp as a rough plane inclined at an angle of \(20 ^ { \circ }\) to the horizontal. The package slides down a line of greatest slope of the plane from a point \(A\) to a point \(B\), where \(A B = 14 \mathrm {~m}\). At \(A\) the package has speed \(12 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and at \(B\) the package has speed \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), as shown in Figure 1. Find
- the total energy lost by the package in travelling from \(A\) to \(B\),
- the coefficient of friction between the package and the ramp.