- The functions \(f\) and \(g\) are defined by
$$\begin{aligned}
& \mathrm { f } : x \rightarrow | 2 x - 5 | , \quad x \in \mathbb { R } ,
& \mathrm {~g} : x \rightarrow \ln ( x + 3 ) , \quad x \in \mathbb { R } , \quad x > - 3
\end{aligned}$$
- State the range of f .
- Evaluate fg(-2).
- Solve the equation
$$\operatorname { fg } ( x ) = 3$$
giving your answers in exact form.
- Show that the equation
$$\mathrm { f } ( x ) = \mathrm { g } ( x )$$
has a root, \(\alpha\), in the interval [3,4].
- Use the iterative formula
$$x _ { n + 1 } = \frac { 1 } { 2 } \left[ 5 + \ln \left( x _ { n } + 3 \right) \right]$$
with \(x _ { 0 } = 3\), to find \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving your answers to 4 significant figures.
- Show that your answer for \(x _ { 4 }\) is the value of \(\alpha\) correct to 4 significant figures.