1.
$$f ( x ) = \frac { 4 x - 1 } { 2 x + 1 }$$
Find an equation for the tangent to the curve \(y = \mathrm { f } ( x )\) at the point where \(x = - 2\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
2.
\includegraphics[max width=\textwidth, alt={}, center]{b124d427-1f9b-4770-95bb-ed79bae5b4fb-1_460_805_587_486}
The diagram shows the curve with equation \(y = \frac { 1 } { 2 } \ln 3 x\).
Express the equation of the curve in the form \(x = \mathrm { f } ( y )\).
The shaded region is bounded by the curve, the coordinate axes and the line \(y = 1\).
Find, in terms of \(\pi\) and e, the volume of the solid formed when the shaded region is rotated through four right angles about the \(y\)-axis.
3. (i) Use the identity for \(\sin ( A + B )\) to show that
$$\sin 3 x \equiv 3 \sin x - 4 \sin ^ { 3 } x$$
(ii) Hence find, in terms of \(\pi\), the solutions of the equation
$$\sin 3 x - \sin x = 0$$
for \(x\) in the interval \(0 \leq x < 2 \pi\).
4. The function f is defined by
$$\mathrm { f } ( x ) \equiv x ^ { 2 } - 2 a x , \quad x \in \mathbb { R }$$
where \(a\) is a positive constant.
Showing the coordinates of any points where the graph meets the axes, sketch the graph of \(y = | \mathrm { f } ( x ) |\).
The function \(g\) is defined by
$$\mathrm { g } ( x ) \equiv 3 a x , \quad x \in \mathbb { R } .$$
Find \(\mathrm { fg } ( \mathrm { a } )\) in terms of \(a\).
Solve the equation
$$\operatorname { gf } ( x ) = 9 a ^ { 3 }$$
6. \(\quad f ( x ) = 2 x ^ { 2 } + 3 \ln ( 2 - x ) , \quad x \in \mathbb { R } , \quad x < 2\).
Show that the equation \(\mathrm { f } ( x ) = 0\) can be written in the form
$$x = 2 - \mathrm { e } ^ { k x ^ { 2 } }$$
where \(k\) is a constant to be found.
The root, \(\alpha\), of the equation \(\mathrm { f } ( x ) = 0\) is 1.9 correct to 1 decimal place.
Use the iterative formula
$$x _ { n + 1 } = 2 - \mathrm { e } ^ { k x _ { n } ^ { 2 } }$$
with \(x _ { 0 } = 1.9\) and your value of \(k\), to find \(\alpha\) correct to 3 decimal places.
You should show the result of each iteration.
Solve the equation \(\mathrm { f } ^ { \prime } ( x ) = 0\).
7. (i) Use the identity
$$\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B$$
to prove that
$$\cos x \equiv 1 - 2 \sin ^ { 2 } \frac { x } { 2 }$$
(ii) Prove that, for \(\sin x \neq 0\),
$$\frac { 1 - \cos x } { \sin x } \equiv \tan \frac { x } { 2 }$$
(iii) Find the values of \(x\) in the interval \(0 \leq x \leq 360 ^ { \circ }\) for which
$$\frac { 1 - \cos x } { \sin x } = 2 \sec ^ { 2 } \frac { x } { 2 } - 5$$
giving your answers to 1 decimal place where appropriate.