OCR C3 (Core Mathematics 3)

Question 1
View details
1. $$f ( x ) = \frac { 4 x - 1 } { 2 x + 1 }$$ Find an equation for the tangent to the curve \(y = \mathrm { f } ( x )\) at the point where \(x = - 2\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Question 2
View details
2.
\includegraphics[max width=\textwidth, alt={}, center]{b124d427-1f9b-4770-95bb-ed79bae5b4fb-1_460_805_587_486} The diagram shows the curve with equation \(y = \frac { 1 } { 2 } \ln 3 x\).
  1. Express the equation of the curve in the form \(x = \mathrm { f } ( y )\). The shaded region is bounded by the curve, the coordinate axes and the line \(y = 1\).
  2. Find, in terms of \(\pi\) and e, the volume of the solid formed when the shaded region is rotated through four right angles about the \(y\)-axis.
Question 3
View details
3. (i) Use the identity for \(\sin ( A + B )\) to show that $$\sin 3 x \equiv 3 \sin x - 4 \sin ^ { 3 } x$$ (ii) Hence find, in terms of \(\pi\), the solutions of the equation $$\sin 3 x - \sin x = 0$$ for \(x\) in the interval \(0 \leq x < 2 \pi\).
Question 4
View details
4. The function f is defined by $$\mathrm { f } ( x ) \equiv x ^ { 2 } - 2 a x , \quad x \in \mathbb { R }$$ where \(a\) is a positive constant.
  1. Showing the coordinates of any points where the graph meets the axes, sketch the graph of \(y = | \mathrm { f } ( x ) |\). The function \(g\) is defined by $$\mathrm { g } ( x ) \equiv 3 a x , \quad x \in \mathbb { R } .$$
  2. Find \(\mathrm { fg } ( \mathrm { a } )\) in terms of \(a\).
  3. Solve the equation $$\operatorname { gf } ( x ) = 9 a ^ { 3 }$$
Question 5
View details
  1. (i) Find, as natural logarithms, the solutions of the equation
$$\mathrm { e } ^ { 2 x } - 8 \mathrm { e } ^ { x } + 15 = 0$$ (ii) Use proof by contradiction to prove that \(\log _ { 2 } 3\) is irrational.
Question 6
View details
6. \(\quad f ( x ) = 2 x ^ { 2 } + 3 \ln ( 2 - x ) , \quad x \in \mathbb { R } , \quad x < 2\).
  1. Show that the equation \(\mathrm { f } ( x ) = 0\) can be written in the form $$x = 2 - \mathrm { e } ^ { k x ^ { 2 } }$$ where \(k\) is a constant to be found. The root, \(\alpha\), of the equation \(\mathrm { f } ( x ) = 0\) is 1.9 correct to 1 decimal place.
  2. Use the iterative formula $$x _ { n + 1 } = 2 - \mathrm { e } ^ { k x _ { n } ^ { 2 } }$$ with \(x _ { 0 } = 1.9\) and your value of \(k\), to find \(\alpha\) correct to 3 decimal places.
    You should show the result of each iteration.
  3. Solve the equation \(\mathrm { f } ^ { \prime } ( x ) = 0\).
Question 7
View details
7. (i) Use the identity $$\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B$$ to prove that $$\cos x \equiv 1 - 2 \sin ^ { 2 } \frac { x } { 2 }$$ (ii) Prove that, for \(\sin x \neq 0\), $$\frac { 1 - \cos x } { \sin x } \equiv \tan \frac { x } { 2 }$$ (iii) Find the values of \(x\) in the interval \(0 \leq x \leq 360 ^ { \circ }\) for which $$\frac { 1 - \cos x } { \sin x } = 2 \sec ^ { 2 } \frac { x } { 2 } - 5$$ giving your answers to 1 decimal place where appropriate.
Question 8
View details
8. \(f ( x ) = x ^ { 2 } - 2 x + 5 , x \in \mathbb { R } , x \geq 1\).
  1. Express \(\mathrm { f } ( x )\) in the form \(( x + a ) ^ { 2 } + b\), where \(a\) and \(b\) are constants.
  2. State the range of f .
  3. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
  4. Describe fully two transformations that would map the graph of \(y = \mathrm { f } ^ { - 1 } ( x )\) onto the graph of \(y = \sqrt { x } , x \geq 0\).
  5. Find an equation for the normal to the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point where \(x = 8\).