A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Standard Integrals and Reverse Chain Rule
Q7
CAIE P2 2006 June — Question 7
Exam Board
CAIE
Module
P2 (Pure Mathematics 2)
Year
2006
Session
June
Topic
Standard Integrals and Reverse Chain Rule
7
Differentiate \(\ln ( 2 x + 3 )\).
Hence, or otherwise, show that $$\int _ { - 1 } ^ { 3 } \frac { 1 } { 2 x + 3 } \mathrm {~d} x = \ln 3$$
Find the quotient and remainder when \(4 x ^ { 2 } + 8 x\) is divided by \(2 x + 3\).
Hence show that $$\int _ { - 1 } ^ { 3 } \frac { 4 x ^ { 2 } + 8 x } { 2 x + 3 } d x = 12 - 3 \ln 3$$
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7