OCR MEI S4 2010 June — Question 4

Exam BoardOCR MEI
ModuleS4 (Statistics 4)
Year2010
SessionJune
TopicChi-squared distribution

4 At an agricultural research station, a trial is made of four varieties (A, B, C, D) of a certain crop in an experimental field. The varieties are grown on plots in the field and their yields are measured in a standard unit.
  1. It is at first thought that there may be a consistent trend in the natural fertility of the soil in the field from the west side to the east, though no other trends are known. Name an experimental design that should be used in these circumstances and give an example of an experimental layout. Initial analysis suggests that any natural fertility trend may in fact be ignored, so the data from the trial are analysed by one-way analysis of variance.
  2. The usual model for one-way analysis of variance of the yields \(y _ { i j }\) may be written as $$y _ { i j } = \mu + \alpha _ { i } + e _ { i j }$$ where the \(e _ { i j }\) represent the experimental errors. Interpret the other terms in the model. State the usual distributional assumptions for the \(e _ { i j }\).
  3. The data for the yields are as follows, each variety having been used on 5 plots.
    Variety
    ABCD
    12.314.214.113.6
    11.913.113.212.8
    12.813.114.613.3
    12.212.513.714.3
    13.512.713.413.8
    $$\left[ \Sigma \Sigma y _ { i j } = 265.1 , \quad \Sigma \Sigma y _ { i j } ^ { 2 } = 3524.31 . \right]$$ Construct the usual one-way analysis of variance table and carry out the usual test, at the 5\% significance level. Report briefly on your conclusions. {www.ocr.org.uk}) after the live examination series.
    If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
    OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }