1 The random variable \(X\) has probability density function
$$\mathrm { f } ( x ) = \frac { x \mathrm { e } ^ { - x / \lambda } } { \lambda ^ { 2 } } \quad ( x > 0 )$$
where \(\lambda\) is a parameter \(( \lambda > 0 ) . X _ { 1 } , X _ { 2 } , \ldots , X _ { n }\) are \(n\) independent observations on \(X\), and \(\bar { X } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } X _ { i }\) is their mean.
- Obtain \(\mathrm { E } ( X )\) and deduce that \(\hat { \lambda } = \frac { 1 } { 2 } \bar { X }\) is an unbiased estimator of \(\lambda\).
- \(\operatorname { Obtain } \operatorname { Var } ( \hat { \lambda } )\).
- Explain why the results in parts (i) and (ii) indicate that \(\hat { \lambda }\) is a good estimator of \(\lambda\) in large samples.
- Suppose that \(n = 3\) and consider the alternative estimator
$$\tilde { \lambda } = \frac { 1 } { 8 } X _ { 1 } + \frac { 1 } { 4 } X _ { 2 } + \frac { 1 } { 8 } X _ { 3 } .$$
Show that \(\tilde { \lambda }\) is an unbiased estimator of \(\lambda\). Find the relative efficiency of \(\tilde { \lambda }\) compared with \(\hat { \lambda }\). Which estimator do you prefer in this case?