OCR MEI S4 2010 June — Question 3

Exam BoardOCR MEI
ModuleS4 (Statistics 4)
Year2010
SessionJune
TopicWilcoxon tests

3 At a factory, two production lines are in use for making steel rods. A critical dimension is the diameter of a rod. For the first production line, it is assumed from experience that the diameters are Normally distributed with standard deviation 1.2 mm . For the second production line, it is assumed from experience that the diameters are Normally distributed with standard deviation 1.4 mm . It is desired to test whether the mean diameters for the two production lines, \(\mu _ { 1 }\) and \(\mu _ { 2 }\), are equal. A random sample of 8 rods is taken from the first production line and, independently, a random sample of 10 rods is taken from the second production line.
  1. Find the acceptance region for the customary test based on the Normal distribution for the null hypothesis \(\mu _ { 1 } = \mu _ { 2 }\), against the alternative hypothesis \(\mu _ { 1 } \neq \mu _ { 2 }\), at the \(5 \%\) level of significance.
  2. The sample means are found to be 25.8 mm and 24.4 mm respectively. What is the result of the test? Provide a two-sided \(99 \%\) confidence interval for \(\mu _ { 1 } - \mu _ { 2 }\). The production lines are modified so that the diameters may be assumed to be of equal (but unknown) variance. However, they may no longer be Normally distributed. A two-sided test of the equality of the population medians is required, at the \(5 \%\) significance level.
  3. The diameters in independent random samples of sizes 6 and 8 are as follows, in mm .
    First production line25.925.825.324.724.425.4
    Second production line23.825.624.023.524.124.524.325.1
    Use an appropriate procedure to carry out the test.