3 At a factory, two production lines are in use for making steel rods. A critical dimension is the diameter of a rod. For the first production line, it is assumed from experience that the diameters are Normally distributed with standard deviation 1.2 mm . For the second production line, it is assumed from experience that the diameters are Normally distributed with standard deviation 1.4 mm . It is desired to test whether the mean diameters for the two production lines, \(\mu _ { 1 }\) and \(\mu _ { 2 }\), are equal. A random sample of 8 rods is taken from the first production line and, independently, a random sample of 10 rods is taken from the second production line.
- Find the acceptance region for the customary test based on the Normal distribution for the null hypothesis \(\mu _ { 1 } = \mu _ { 2 }\), against the alternative hypothesis \(\mu _ { 1 } \neq \mu _ { 2 }\), at the \(5 \%\) level of significance.
- The sample means are found to be 25.8 mm and 24.4 mm respectively. What is the result of the test? Provide a two-sided \(99 \%\) confidence interval for \(\mu _ { 1 } - \mu _ { 2 }\).
The production lines are modified so that the diameters may be assumed to be of equal (but unknown) variance. However, they may no longer be Normally distributed. A two-sided test of the equality of the population medians is required, at the \(5 \%\) significance level.
- The diameters in independent random samples of sizes 6 and 8 are as follows, in mm .
| First production line | 25.9 | 25.8 | 25.3 | 24.7 | 24.4 | 25.4 | | |
| Second production line | 23.8 | 25.6 | 24.0 | 23.5 | 24.1 | 24.5 | 24.3 | 25.1 |
Use an appropriate procedure to carry out the test.