OCR S3 Specimen — Question 4

Exam BoardOCR
ModuleS3 (Statistics 3)
SessionSpecimen
TopicChi-squared distribution

4 The lengths of time, in seconds, between vehicles passing a fixed observation point on a road were recorded at a time when traffic was flowing freely. The frequency distribution in Table 1 is a summary of the data from 100 observations. \begin{table}[h]
Time interval \(( x\) seconds \()\)\(0 < x \leqslant 5\)\(5 < x \leqslant 10\)\(10 < x \leqslant 20\)\(20 < x \leqslant 40\)\(40 < x\)
Observed frequency49222072
\captionsetup{labelformat=empty} \caption{Table 1}
\end{table} It is thought that the distribution of times might be modelled by the continuous random variable \(X\) with probability density function given by $$f ( x ) = \begin{cases} 0.1 e ^ { - 0.1 x } & x > 0
0 & \text { otherwise } \end{cases}$$ Using this model, the expected frequencies (correct to 2 decimal places) for the given time intervals are shown in Table 2. \begin{table}[h]
Time interval \(( x\) seconds \()\)\(0 < x \leqslant 5\)\(5 < x \leqslant 10\)\(10 < x \leqslant 20\)\(20 < x \leqslant 40\)\(40 < x\)
Expected frequency39.3523.8723.2511.701.83
\captionsetup{labelformat=empty} \caption{Table 2}
\end{table}
  1. Show how the expected frequency of 23.87, corresponding to the interval \(5 < x \leqslant 10\), is obtained.
  2. Test, at the 10\% significance level, the goodness of fit of the model to the data.