Multi-part piecewise CDF

Work with a CDF defined in three or more pieces with multiple unknown constants, finding constants using continuity and boundary conditions across all pieces.

8 questions

OCR S3 2006 January Q5
5 The continuous random variable \(X\) has cumulative distribution function given by $$F ( x ) = \begin{cases} 0 & x < 1 ,
\frac { 1 } { 8 } ( x - 1 ) ^ { 2 } & 1 \leqslant x < 3 ,
a ( x - 2 ) & 3 \leqslant x < 4 ,
1 & x \geqslant 4 , \end{cases}$$ where \(a\) is a positive constant.
  1. Find the value of \(a\).
  2. Verify that \(C _ { X } ( 8 )\), the 8th percentile of \(X\), is 1.8 .
  3. Find the cumulative distribution function of \(Y\), where \(Y = \sqrt { X - 1 }\).
  4. Find \(C _ { Y } ( 8 )\) and verify that \(C _ { Y } ( 8 ) = \sqrt { C _ { X } ( 8 ) - 1 }\).
Edexcel S2 2023 June Q5
  1. A continuous random variable \(Y\) has cumulative distribution function given by
$$\mathrm { F } ( y ) = \left\{ \begin{array} { c r } 0 & y < 3
\frac { 1 } { 16 } \left( y ^ { 2 } - 6 y + a \right) & 3 \leqslant y \leqslant 5
\frac { 1 } { 12 } ( y + b ) & 5 < y \leqslant 9
\frac { 1 } { 12 } \left( 100 y - 5 y ^ { 2 } + c \right) & 9 < y \leqslant 10
1 & y > 10 \end{array} \right.$$ where \(a\), \(b\) and \(c\) are constants.
  1. Find the value of \(a\) and the value of \(c\)
  2. Find the value of \(b\)
  3. Find \(\mathrm { P } ( 6 < Y \leqslant 9 )\) Show your working clearly.
  4. Specify the probability density function, f(y), for \(5 < y \leqslant 9\) Using the information $$\int _ { 3 } ^ { 5 } ( 6 y - 5 ) f ( y ) d y + \int _ { 9 } ^ { 10 } ( 6 y - 5 ) f ( y ) d y = 26.5$$
  5. find \(\mathrm { E } ( 6 Y - 5 )\) You should make your method clear.
Edexcel S2 2024 June Q2
2 The continuous random variable \(H\) has cumulative distribution function given by $$\mathrm { F } ( h ) = \left\{ \begin{array} { l r } 0 & h \leqslant 0
\frac { h ^ { 2 } } { 48 } & 0 < h \leqslant 4
\frac { h } { 6 } - \frac { 1 } { 3 } & 4 < h \leqslant 5
\frac { 3 } { 10 } h - \frac { h ^ { 2 } } { 75 } - \frac { 2 } { 3 } & 5 < h \leqslant d
1 & h > d \end{array} \right.$$ where \(d\) is a constant.
  1. Show that \(2 d ^ { 2 } - 45 d + 250 = 0\)
  2. Find \(\mathrm { P } ( H < 1.5 \mid 1 < H < 4.5 )\)
  3. Find the probability density function \(\mathrm { f } ( h )\) You may leave the limits of \(h\) in terms of \(d\) where necessary.
Edexcel S2 2017 October Q5
5. The continuous random variable \(Y\) has cumulative distribution function \(\mathrm { F } ( y )\) given by $$\mathrm { F } ( y ) = \left\{ \begin{array} { l r } 0 & y < 3
k \left( y ^ { 2 } - 2 y - 3 \right) & 3 \leqslant y \leqslant \alpha
4 k ( 2 y - 7 ) & \alpha < y \leqslant 6
1 & y > 6 \end{array} \right.$$ where \(k\) and \(\alpha\) are constants.
  1. Find \(\mathrm { P } ( 4.5 < Y \leqslant 5.5 )\)
  2. Find the probability density function \(\mathrm { f } ( \mathrm { y } )\)
Edexcel S2 2021 October Q3
3. A continuous random variable \(X\) has cumulative distribution function $$\mathrm { F } ( x ) = \left\{ \begin{array} { l r } 0 & x < 0
4 a x ^ { 2 } & 0 \leqslant x \leqslant 1
a \left( b x ^ { 3 } - x ^ { 4 } + 1 \right) & 1 < x \leqslant 3
1 & x > 3 \end{array} \right.$$ where \(a\) and \(b\) are positive constants.
  1. Show that \(b = 4\)
  2. Find the exact value of \(a\)
  3. Find \(\mathrm { P } ( X > 2.25 )\)
  4. Showing your working clearly,
    1. sketch the probability density function of \(X\)
    2. calculate the mode of \(X\)
Edexcel S2 2022 October Q5
  1. The continuous random variable \(X\) has cumulative distribution function given by
$$\mathrm { F } ( x ) = \left\{ \begin{array} { c r } 0 & x < 3
\frac { 1 } { 6 } ( x - 3 ) ^ { 2 } & 3 \leqslant x < 4
\frac { x } { 3 } - \frac { 7 } { 6 } & 4 \leqslant x < c
1 - \frac { 1 } { 6 } ( d - x ) ^ { 2 } & c \leqslant x < 7
1 & x \geqslant 7 \end{array} \right.$$ where \(c\) and \(d\) are constants.
  1. Show that \(c = 6\)
  2. Find \(\mathrm { P } ( X > 3.5 )\)
  3. Find \(\mathrm { P } ( X > 4.5 \mid 3.5 < X < 5.5 )\)
Edexcel S2 2018 June Q6
  1. The continuous random variable \(X\) has the following cumulative distribution function
$$\mathrm { F } ( x ) = \left\{ \begin{array} { c c } 0 & x \leqslant 1
\frac { 4 } { 15 } ( x - 1 ) & 1 < x \leqslant 2
k \left( \frac { a x ^ { 3 } } { 3 } - \frac { x ^ { 4 } } { 4 } \right) + b & 2 < x \leqslant 4
1 & x > 4 \end{array} \right.$$ where \(k , a\) and \(b\) are constants.
Given that the mode of \(X\) is \(\frac { 8 } { 3 }\)
  1. show that \(a = 4\)
  2. Find \(\mathrm { P } ( X < 2.5 )\) giving your answer to 3 significant figures.
OCR MEI Further Statistics Major 2024 June Q12
12 The cumulative distribution function of the continuous random variable \(X\) is given by
\(F ( x ) = \begin{cases} 0 & x < 20 ,
a \left( x ^ { 2 } + b x + c \right) & 20 \leqslant x \leqslant 30 ,
1 & x > 30 , \end{cases}\)
where \(a\), \(b\) and \(c\) are constants.
You are given that \(\mathrm { P } ( X < 25 ) = \frac { 11 } { 24 }\).
  1. Find \(\mathrm { P } ( X > 27 )\).
  2. Find the 90th percentile of \(X\).